High Confidence Groundwater Reserve Determination Study for the Berg Catchment

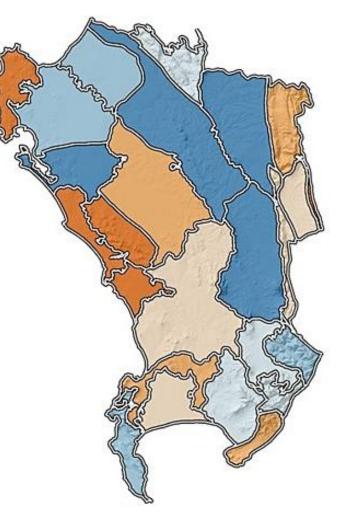
Groundwater Reserve Determination – PSC 06

Presented by: Date: Umvoto 16 February 2024

WATER IS LIFE - SANITATION IS DIGNITY

water & sanitation

Department: Water and Sanitation **REPUBLIC OF SOUTH AFRICA**



ARTH | WATER | SCIENCE | LIFE

PRESENTATION OUTLINE

- 1. Summary of the Project
- 2. Step 1 8 of the Groundwater Reserve Determination
- 3. Groundwater Reserve Determination Report
 - a) Report Structure
 - b) The Groundwater Reserve
 - Groundwater Quantity Component
 - Groundwater Quality Component
 - c) Example of the Groundwater Reserve per GRU
- 4. The Groundwater Reserve Database

SUMMARY OF PROJECT PHASES, TASKS AND DELIVERABLES

Phase 1	Project ir	Project inception								
Task 1	Inception		Deliverable 1: Inception Report							
Phase 2	Review o	f water resource information ar	nd data							
Task 2.1	Data colle	ection and collation	Deliverable 2.1: Gap Analysis Report Deliverable 2.2: Inventory of Water Resource Models							
Phase 3	Reserve	determination								
Task 3.1	Step 1	Initiate Groundwater Reserve Study	Recorded in Deliverable 2.1 and Deliverable 2.2							
Task 3.2	Step 2	Water RU Delineation	Deliverable 3.1: Delineation of Water RUs							
Task 3.3	Step 3	Ecological Status and Reference Conditions per RU	Deliverable 3.2: Ecological Reference Conditions							
Task 3.4	Step 4	Determine BHN and EWR	Deliverable 3.3: BHN and EWR Requirement Report							
Task 3.5	Step 5	Operational Scenarios & Socio-economic	Deliverable 3.4: Operational Scenarios & socio-economic and ecological consequences							
Task 3.6	Step 6	Evaluate scenarios with Stakeholders	Deliverable 3.5: Stakeholder engagement of operation scenarios							
Task 3.7	Step 7	Monitoring Programme	Deliverables 3.6: Monitoring Programme Report							
Task 3.8	Step 8	Gazette & implement Reserve	Deliverable 3.7: Groundwater Reserve Determination Report Deliverable 3.8: Database Deliverable 3.9: Gazette Template							

OBJECTIVES OF THE STUDY

The ultimate outcomes of this study can be broken down into 3 overarching objectives:

- 1. To provide insights into the groundwater resources within the Berg catchment, considering both the established conservation status of priority water resources and the complex geological and hydrogeological features of the study area.
- 2. To offer aquifer-specific information to facilitate well-informed management decisions concerning stressed or over-utilized groundwater resources.
- 3. To complete the Resource Directed Measures (RDM) process for the Berg catchment and support the gazette Water Resource Classes (WRCs) and Resource Quality Objectives (RQOs) - (Gazette No.42451:121).

OBJECTIVES OF STEP 8

The objective of this report was to provide a **comprehensive summary of the findings and recommendations** resulting from the Groundwater Reserve Determination (GRD) process conducted for the Berg catchment.

- 1) The methodology applied for each step of the GRD process (i.e., Steps 1 8)
- 2) Presenting a summary of the GRU-specific information necessary for determining the groundwater components of the Reserve:
 - a) Groundwater Quantity Component
 - I. The Groundwater Contribution to the BHN and EWR Reserve
 - a) Groundwater Quality Component
 - I. Groundwater Quality Reserve
 - II. Groundwater Quality BHN Reserve / Requirement

GROUNDWATER RESERVE DETERMINATION

Step 1: Data and Water Resource Models

Key Projects:

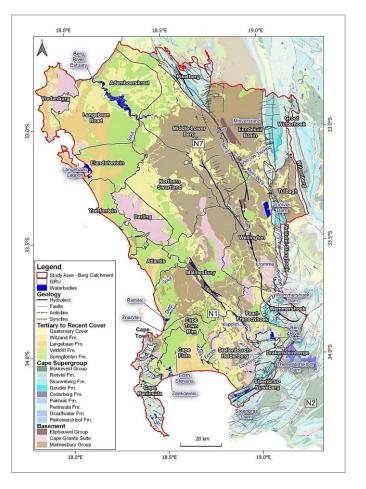
- The Berg Catchment WRCs and RQOs Study (DWS, 2016)
- The Berg Water Availability Assessment Study (Berg WAAS) project (DWAF, 2008)

Key Datasets:

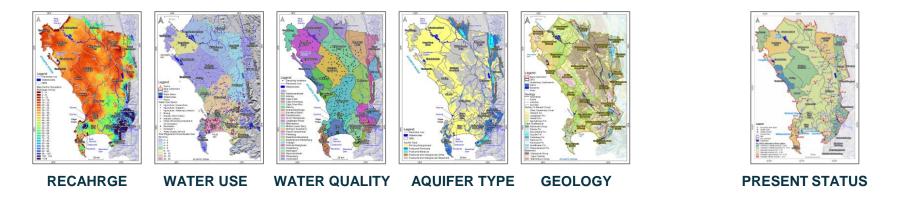
- National Groundwater Archive (NGA)
- Water Management System (WMS)
- Water Use Authorization & Registration Management System (WARMS)
- Hydstra
- Geological Maps for CGS (1:50 000)

Key Water Resource Models:

- Cape Flats Aquifer (Vol 5a and b) DWAF (2008d)
- Langebaan Road Aquifer System, Elandsfontein Aquifer System (Vol 6) DWAF (2008e)
- Breede River Alluvium Aquifer (Vol 9) DWAF (2008f)
- Steenbras TMG Aquifer system (Nardouw Aquifer) City of Cape Town (2021)
- Atlantis Aquifer City of Cape Town (2020a)
- Cape Flats Aquifer City of Cape Town (2020b)
- Lower Berg model (the Langebaan Road Aquifer system, Elandsfontein Aquifer and Adamboerkraal Aquifer) -WRC (2020)


Step 2: Delineation of Groundwater Resource Units

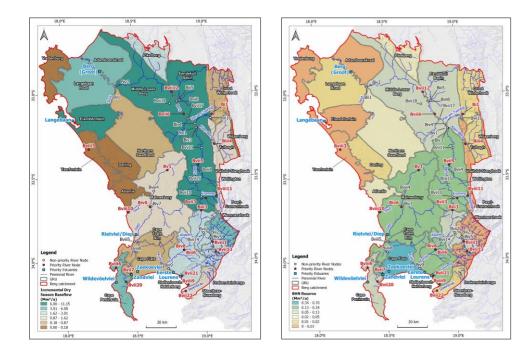
Previous GRUs:


 GRUs (DWS, 2016) were initially delineated based on surface water catchments, resulting in the grouping of various aquifer systems into single GRUs to integrate them with surface water systems. Unfortunately, this approach had limitations, leading to potential groundwater management issues for the catchment, such as the exclusion of significant aquifer systems like the Table Mountain Group Aquifers (TMGA) in the Steenbras area.

Updated GRUs:

- Main Criteria
 - Geology
 - o Existing Aquifer Boundaries
 - Topography and Recharge Areas
 - Structural Geology (Faults, Folds, Hydrotects)
 - o Potential Discharge Areas
 - Integrated Units of Analysis (IUAs)
 - Water Resource Class (WRCs)
 - Resource Quality objectives (RQOs)
 - Strategic Water Source Areas (SWSA)
 - o Subterranean Government Water Control Areas (SGWCA)
 - Groundwater-Surface Water Interactions

Step 3: Ecological Reference Conditions & Present Status


Step 3 re-evaluated the Ecological Reference Conditions (ambient or natural state) and present status (current state in terms of groundwater utilization and water quality) of the catchment:

Revised assessment of the groundwater status quo encompassed five critical hydrogeological components:

- 1) Recharge,
- 2) Groundwater Use
- 3) Groundwater Quality
- 4) Aquifer Type
- 5) Geology

	Groundwater Availability Present Status Category	Water Quality Present Status Category
	Stress Index (GW use / Recharge)	Percentage Exceedance
Α	<0.05	<16.7 %
В	0.05 - 0.20	16.7 – 33.4 %
С	0.20 - 0.40	33.4 – 50.1 %
D	0.40 - 0.65	50.1 - 66.8 %
E	0.65 – 0.95	66.8 - 83.5 %
F	>0.95	>83.5 %

Step 4: BHN and EWR Requirements

Basic Human Needs

The BHN addresses individuals without access to a formal water supply and residing beyond 500m from a perennial river, with a daily water demand set at a fixed value of 25 l/p/d.

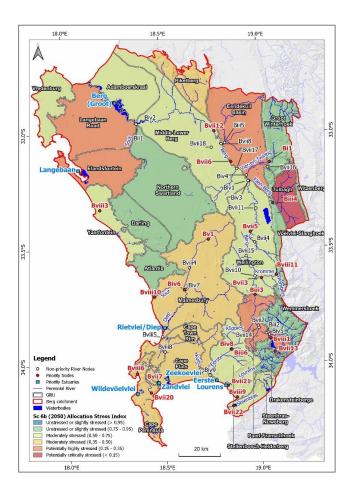
Ecological Water Requirements

The EWR involved using baseflow separation, wherein groundwater discharge was calculated using monthly flow data calibrated to meet Target Ecological Categories (TECs) for each node and factoring in cumulative flow effects downstream. A recharge ratio was applied to the total dry season contribution of groundwater to baseflow per GRU and associated aquifer types.

Groundwater Contribution to EWR

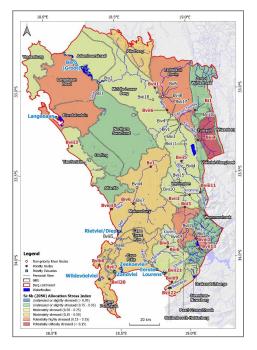
Groundwater Contribution to BHN

Step 5: Operational Scenarios


Steps 5 involved developing operational scenarios aimed at assessing the socio-economic and ecological impacts on the Groundwater Reserve.

The scenarios offered valuable insights into both current and future trends of GRUs in the Berg catchment for both the Sc 6a (Worst Case) and Sc 6b (Most-Likely Case).

Scenario No.	Scenario Name
Sc 1	Population Growth
Sc 2	Sectoral Water Demand
Sc 3	Groundwater Developments
Sc 4	Climate Change
Sc 5	Alien and Invasive Species
Sc 6a	Combination Scenario (Worst Case)
Sc 6b	Combination Scenario (Most-Likely Case)


Allocation Category	Description	Allocation Factor
А	Unstressed or slightly stressed	>0.95
В	Unstressed or slightly stressed	0.75 – 0.95
C	Moderately stressed	0.5 – 0.75
D	Moderately stressed	0.35 – 0.50
E	Potentially highly stressed	0.15 – 0.35
F	Potentially critically stressed	<0.15

Step 6: Stakeholder Engagement

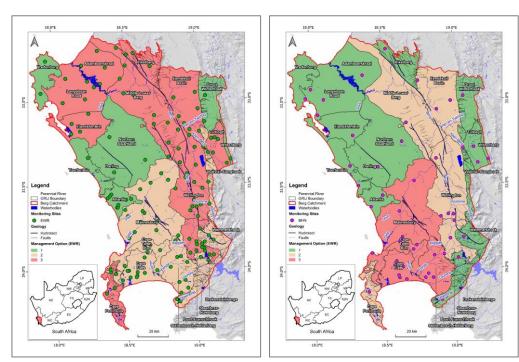
The discussions focused on additional operational scenarios, updated datasets, and the selection of the preferred scenario for future implementation. Stakeholder input centered around groundwater control areas, the inclusion of GDEs, an evaluation of the potential increase in groundwater reliance should WWTW infrastructure deteriorate, and the consideration of updated climate models.

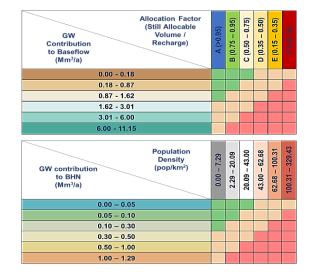
FUTURE SCENARIO (2050)

Stakeholders:

Officials from the DWS Representatives from CMAs Members of WUAs Public and Private Entities Other water users

Scenario No.	Scenario Name			
Sc 1	Population Growth			
Sc 2	Water System Evaluation			
Sc 3	Sectoral Water Demand			
Sc 4	Groundwater Developments			
Sc 5	Climate Change			
Sc 6	Alien and Invasive Species			
Sc 7a	Combination Scenario (Worst Case)			
Sc 7b	Combination Scenario (Most-Likely Case)			


Step 7: Monitoring Programme


Step 7 focused on designing a Monitoring Programme, considering:

- 1. Existing monitoring sites
 - 2. Spatial distribution
 - 3. Target aquifer unit

GW Contribution to EWR

GW Contribution to BHN

Management Options were assigned, using an Impact vs. Influence Matrix.

'Impact' Factors

- 'Allocation Factor'
- 'Qualifying Population Density'

'influence' factors

- · 'Groundwater Contribution to Baseflow'
- 'Groundwater Contribution to the BHN Reserve'

Step 8: Groundwater Reserve Determination

Step 8 offers comprehensive summary of findings and recommendations resulting from the GRD process and provides aquifer-specific information for various hydrogeological components considered for the Groundwater Reserve, specifically the groundwater contribution to the BHN and EWR.

The Reserve components are outlined below:

1. Groundwater Quantity Component

It was calculated by considering the total groundwater contribution (i.e., volume) to both the EWR and BHN Reserves.

2. Groundwater Quality Component

Groundwater Quality Reserve

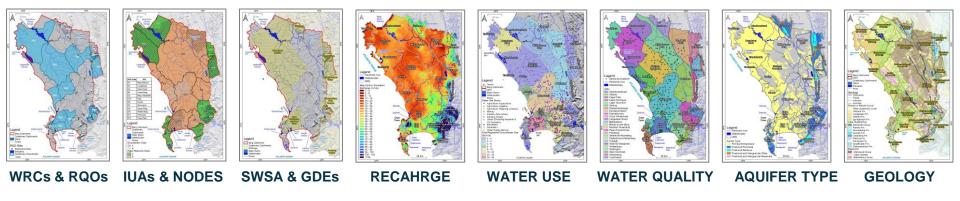
The Groundwater Quality Reserve was determined based on statistical analysis of the baseline and median chemical concentration within specific aquifers in all GRUs.

Groundwater Quality Requirement for BHN

Upper limit of Class I Water Quality [Drinking] - South African Water Quality Guidelines, Volume 1: Domestic Water Use, 2nd Ed. 1996. Department of Water Affairs, Pretoria, South Africa.

REPORT STRUCTURE

Chapter 1: Introduction


- Study Area
- Overview of GRD Methodology


Chapter 2: Summary of the eight-step GRD procedure

- Data and Water Resource Models
- Delineation of GRUs
- Present Status & Ecological Reference Conditions
- Requirements for BHN and EWR
- Operational Scenarios
- Monitoring Programme

Chapter 3: Groundwater Reserve

 GRU-specific information and the components of the Groundwater Reserve (i.e., the Quantity & Quality components).

Calledon Statistics Castingy Castingy Castingy

GW TO EWR

SCENARIO

MONITORING PROGRAMME

The Berg catchment encompasses a total of 44 Quaternary Catchments, delineated into 25 GRUs.

Groundwater systems may not always correspond directly to surface water catchments i.e., GRUs can encompass one or more quaternary catchments, or portions thereof (depending on their hydrogeological characteristics)

The Groundwater Quantity Component was calculated considering the total groundwater contribution to both the EWR and the BHN Reserves.

1. Basic Human Needs

The BHN addresses individuals without access to a formal water supply and residing beyond 500m from a perennial river, with a daily water demand set at a fixed value of 25 $\ell/p/d$.

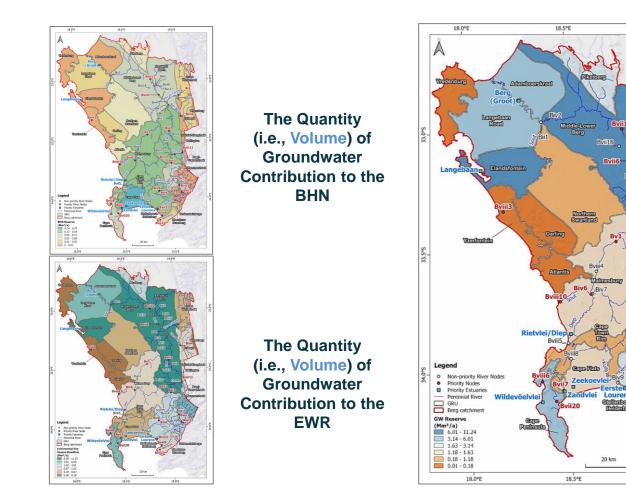
2. Ecological Water Requirements

The EWR involved using baseflow separation, wherein groundwater discharge was calculated using monthly flow data calibrated to meet Target Ecological Categories (TECs) for each node, and factoring in cumulative flow effects downstream. A recharge ratio was applied to the total dry season contribution of groundwater to baseflow per GRU and associated aquifer types.

19.0°E

Biv1

-Biv3


Bvilli

Bvii5

Bvii4

19.0°E

Troderal Shooland

The Groundwater Quantity Component of the Reserve

GRU	Associated Quaternary Catchments	Area	Recharg e	W	Water Use		BHN Reserve	GW Contribution to the Reserve	GW Contribution to the Reserve
		(Km²)	(Mm³/a)	(Mm³/a)	(Mm³/a)	(Mm³/a)	(Mm³/a)	(Mm³/a)	(% MAR)
Oran a Flata	PRIMARY /	1	1		1	0.54	0.70	4.04	00/
Cape Flats	G22C,G22D,G22E,G22H	421.94	41.25	0.51	12.00	0.51	0.70	1.21	3%
Atlantis	G21A,G21B,G21D	255.68	22.74	0.08	1.70	0.08	0.03	0.11	0%
Yzerfontein	G10L,G10M,G21A	320.33	9.20	0.02	0.26	0.02	0.01	0.03	0%
Elandsfontein	G10L,G10M,G21A	532.57	15.47	6.95	1.09	6.39	0.01	6.40	41%
Langebaan Road	G10L,G10M	903.71	23.28	5.52	8.59	5.52	0.02	5.54	24%
Adamboerskraal	G10K,G10L,G10M,G30A	612.30	21.61	6.00	2.13	6.00	0.01	6.01	28%
	FRACTURED TAE		1						
Cape Peninsula	G22A,G22B,G22C,G22D	292.53	10.99	5.43	0.07	5.43	0.09	5.52	50%
Steenbras-Nuweberg	G22J,G22K,G40A,G40B,G40C,G40D,H60A	150.24	58.76	1.16	8.00	1.16	0.02	1.18	2%
Drakensteinberge	G10A,G10C,G22F,G22J,H60A,H60B	164.95	27.60	2.88	0.05	2.88	0.00	2.88	10%
Wemmershoek	G10A,G10B,G10C,H10J,H10K,H60B	229.13	26.83	3.59	0.81	3.59	0.00	3.59	13%
Voëlvlei-Slanghoek	G10D,G10E,G10F,G10J,H10E,H10F,H10J	184.26	14.10	1.62	0.13	1.62	0.01	1.63	12%
Witzenberg	G10E,G10G,H10C,H10D,H10F	39.95	2.78	0.18	0.08	0.18	0.00	0.18	7%
Groot Winterhoek	E10B,E10C,G10E,G10G,G10H,G10J	379.26	22.50	0.77	1.39	0.77	0.02	0.79	3%
Piketberg	G10H,G10K,G10M,G30A,G30D	298.29	20.33	2.07	5.58	2.07	0.04	2.11	10%
	FRACTURED AN	ND INTER	GRANUL	AR BASE	MENT		•		
Cape Town Rim	G21E,G21F,G22A,G22B,G22C,G22D,G22E,G22G, G22H	814.62	18.60	0.87	6.21	0.87	0.20	1.07	6%
Stellenbosch- Helderberg	G10C,G21E,G22E,G22F,G22G,G22H,G22J,G22K, H60A	570.58	41.52	2.34	8.81	2.34	0.24	2.58	6%
Paarl-Franschhoek	G10A,G10B,G10C,G10D,G21E,G22F,H10J,H60B	368.50	26.61	3.01	9.82	3.01	0.13	3.14	12%
Malmesbury	G10D,G10F,G10L,G21B,G21C,G21D,G21E,G21F, G22C,G22	1600.36	52.65	1.18	14.75	1.18	0.34	1.52	3%
Wellington	G10D,G10F,G10J,G21E	1068.81	39.49	6.75	4.48	6.75	0.24	6.99	18%
Tulbagh	G10E,G10G,H10F	291.38	10.87	1.28	3.78	1.28	0.02	1.30	12%
Eendekuil Basin	G10F,G10H,G10J,G10K	936.94	21.88	6.95	4.85	6.95	0.09	7.04	32%
Middle-Lower Berg	G10F,G10J,G10K,G10L,G10M,G30A	1485.40	42.49	11.15	2.23	11.15	0.09	11.24	26%
Northern Swartland	G10J,G10K,G10L,G21A,G21C,G21D	1257.65	31.85	0.20	1.79	0.20	0.05	0.25	1%
Darling	G10L,G21A,G21B,G21D	408.82	9.95	0.03	0.76	0.03	0.02	0.05	0%
Vredenburg	G10M	376.18	7.43	0.00	1.16	0.00	0.01	0.01	0%

Data from various sources were collected and analyzed to **evaluate baseline water quality** and identify **potential sources of contamination** across GRUs. The evaluation also included an assessment of selected groundwater parameters for **compliance with gazette RQOs**.

Data primary source was the Water Management System (WMS). CoCT data was used in GRUs where WMS monitoring points were lacking. A total of **358 unique monitoring** locations were considered across the 25 GRUs, with **six GRUs lacking monitoring data**, primarily within the fractured Table Mountain Group Aquifers (TMGA).

The Groundwater Quality Component of the Reserve was determined by assessing two primary components:

1. Groundwater Quality Reserve

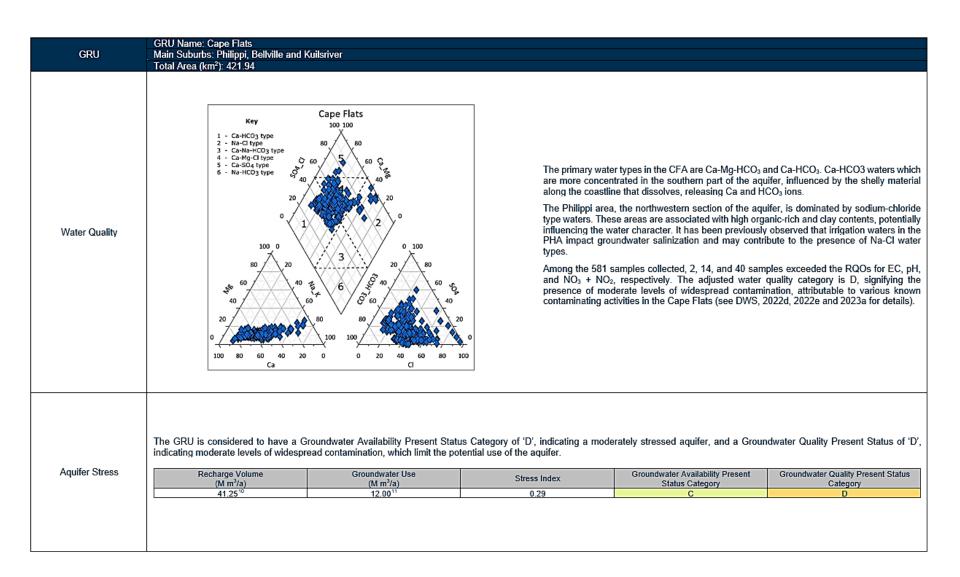
 Determined based on statistical analysis of baseline and median concentrations within specific aquifers in GRUs

2. Groundwater Quality Requirement for BHN

Upper limit of Class I Water Quality [Drinking]

EXAMPLE: Cape Flats GRU

GRU	AQU	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		37	581	8.30	5.07	8.55	7.84	8.55	5 – 9
		Electrical Conductivity	mS/m	37	581	113.72	13.00	578.00	88.85	113.72	150
		Sodium as Na	mg/l	37	581	111.36	3.30	784.00	58.90	111.36	200
		Calcium as Ca	mg/l	37	581	112.16	3.81	266.50	101.50	112.16	150
		Magnesium as Mg	mg/l	37	581	14.62	1.00	124.70	11.60	14.62	70
	Primary /	Chloride as Cl	mg/l	37	581	209.22	5.00	1993.00	100.00	209.22	200
Cape Flats	Intergranular	Nitrate + Nitrite	mg/l	37	581	8.35	0.02	23.20	1.12	8.35	400
	Aquifer	Fluoride as F	mg/l	37	581	0.26	0.05	3.05	0.15	0.26	10
		Ammonia as NH3	mg/l	37	581	0.08	0.02	31.89	0.06	0.08	1.5
		Orthophosphate as PO4	mg/l	37	581	0.03	0.00	1.35	0.01	0.03	-
		Potassium as K	mg/l	37	581	2.95	0.15	53.66	1.90	2.95	-
		Sulphate as SO4 as SO4	mg/l	37	581	44.40	2.00	326.00	45.40	49.94	-


• True <u>Baseline</u> concentrations, unaffected by human activities, was challenging due to diverse anthropogenic influences. Therefore, an approximation of the baseline was made using monitoring sites in areas with minimal human impact. To mitigate outliers, the 95th percentile statistical method was favoured over maximum concentrations, capturing the majority of data while excluding extreme values.

- The <u>Groundwater Quality Reserve</u> was determined by taking the Median concentration plus 10%. If this value was lower than the Baseline concentration, the Baseline value was chosen. If it exceeded the Maximum concentration, then the Maximum value was selected.
- The <u>BHN threshold</u> was selected based on the upper limit of Class I water quality [Drinking] (WRC et al. 2nd Edition, 1998, Volume 1: Assessment Guide).

EXAMPLE OF SUMMARY PER GRU

GRU	GRU Name: Cape Flats Main Suburbs: Philippi, Bellville and Kuilsriver Total Area (km²): 421.94						
GRU Boundary Description	The Cape Flats GRU was delineated using the City of Cape Town's CFA model boundary (CoCT, 2018; 2020a). The aquifer model employed a slope separation criterion (<2 degrees) to distinguish the Cape Flats area from the adjacent hills and mountains. Additionally, it incorporated an interpolated geological extent of the basement, encompassing the Cape Granite Suite (CGS) and the Malmesbury Group rocks, along the GRU periphery. The southern boundary of the GRU was defined by the False Bay coastline (refer to Figure 3-1 and DWS, 2022d and 2023a).						
Quaternary Catchments	G22C, G22D, G22E and G22H (see Figure 3-1)						
Resource Unit	Primary / Intergranular Aquifer						
Description	Geologically, the Cape Flats GRU comprises the Tertiary and Quaternary sedimentary deposits of the Sandveld Group, including fluvial, marine, and aeolian formations. These deposits unconformably overlie weathered Neoproterozoic to early Cambrian Malmesbury Group and CGS basement nocks (see Figure 3-1 and the cross section below). Hydrostratigraphically, the basement topography (see Figure 3-1 and the cross section below). One of these paleochannels coincides with the Philippi Horticultural Area (PHA; DWAF, 2008a; DWS, 2022d and 2023a).						

GRU	GRU Name: Cape Flats Main Suburbs: Philippi, Bellville and Kuilsriver Total Area (km²): 421.94								
Surface Water System	The primary rivers in the area are the Kuils, Lotus, and Elsieskraal rivers. Notable surface water bodies include Zandvlei, Zeekoevlei, Rondvlei, and the Eerste Estuary (see Figure 3-1). These rivers and wetlands are expected to be hydraulically linked to the relatively shallow groundwater. In cases where the aquifer is semi-confined, such as within the deep gravels in the paleochannels, or on a smaller local scale where the aquifer is semi-confined by laterally discontinuous calcrete or clay lenses, rivers and wetlands are likely to be connected hydraulically only with the uppermost unconfined sand unit (CoCT, 2021). Wetlands spread across the Cape Flats GRU are predominantly duneslack wetlands associated with interflow from surrounding dunes and perched aquifer systems (refer to DWS, 2022d and 2023a).								
Water Resource	II, while the remaining	portions lack a Ground	water Resource Class d 3-1 and the table below)	lesignation. This IUA de	s III. Within catchments G oes not host any EWR si				
Classes & RQOs	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nM/	
			G22D	E12-R15	Keysers	Bvii7	D	93	
	E12 Cape Flats	III	G22K	E12-E05	Zandvlei	Bxi9	c	93	
l		<u> </u>	G22K	E12-E05	Zeekoevlei	Bxi9	D	N//	A
	Model-based ca	ethod alibrated recharge pCT, 2018)	Area (I 421.		Recharge Volum 41.25		Average	Recharge Rate (mm/ 97.76	a)
			in the Cape Flats GRU,				rgranular Aquifer		
	12.00 M m ³ /a of ground	dwater (note that there is	s a Managed Aquifer Rec	charge component of	Agriculture: Irrigation		50	4.08	
	12.00 M m ³ /a of ground -14.6 M m ³ /a ⁹). The	dwater (note that there is primary sectors contrib	s a Managed Aquifer Rec uting to groundwater us	charge component of se are Water Supply	Agriculture: Watering Live	stock	2	0.05	
	12.00 M m ³ /a of ground -14.6 M m ³ /a ⁹). The Services and Agricultur	dwater (note that there is primary sectors contrib re (irrigation), constitutin	s a Managed Aquifer Rec uting to groundwater us g 75.4% and 15.32%, res	charge component of se are Water Supply spectively, of the total	Agriculture: Watering Live Industry (Non-Urban)	stock	50 2 2	0.05 1.05	
	12.00 M m ³ /a of ground -14.6 M m ³ /a ⁹). The Services and Agricultur groundwater use in the	dwater (note that there is primary sectors contrib re (irrigation), constitutin a area (it's important to n	s a Managed Aquifer Rec uting to groundwater us g 75.4% and 15.32%, res tote that these percentage	charge component of se are Water Supply spectively, of the total es do not account for	Agriculture: Watering Live Industry (Non-Urban) Industry (Urban)	stock	2	0.05 1.05 0.97	
Craun durates 11-2	12.00 M m ³ /a of ground -14.6 M m ³ /a ⁹). The Services and Agricultur groundwater use in the Managed Aquifer Rec	dwater (note that there is primary sectors contrib re (irrigation), constitutin e area (it's important to n charge). It is acknowled	s a Managed Aquifer Rec uting to groundwater us g 75.4% and 15.32%, res tote that these percentage dged that farmers likely	charge component of se are Water Supply spectively, of the total es do not account for	Agriculture: Watering Live Industry (Non-Urban)	stock	50 2 2 31	0.05 1.05	
Groundwater Use	12.00 M m ³ /a of ground -14.6 M m ³ /a ⁹). The Services and Agricultur groundwater use in the Managed Aquifer Rec registered volume (see	dwater (note that there is primary sectors contrib re (irrigation), constitutin e area (it's important to n charge). It is acknowled a Figure 3-1 and the tab	s a Managed Aquifer Red uting to groundwater us g 75.4% and 15.32%, res lote that these percentage dged that farmers likely le to the right).	charge component of se are Water Supply spectively, of the total es do not account for extract double their	Agriculture: Watering Live Industry (Non-Urban) Industry (Urban) Mining	stock	50 2 2 31 1 3 3	0.05 1.05 0.97 0.39	
Groundwater Use	12.00 M m ³ /a of ground -14.6 M m ³ /a ⁹). The Services and Agricultur groundwater use in the Managed Aquifer Rec registered volume (see The registered ground	dwater (note that there is primary sectors contrib re (irrigation), constitutin e area (it's important to n charge). It is acknowled e Figure 3-1 and the tab water use is concentrate	s a Managed Aquifer Red uting to groundwater us g 75.4% and 15.32%, res lote that these percentage dged that farmers likely le to the right). ed in the PHA, with additi	charge component of se are Water Supply spectively, of the total es do not account for extract double their ional industrial use in	Agriculture: Watering Live Industry (Non-Urban) Industry (Urban) Mining Schedule 1 Urban (Excluding Indust And/Or Domestic) Water Supply Service	rial	50 2 2 31 1 3 5	0.05 1.05 0.97 0.39 0 0.02 20.09	
Groundwater Use	12.00 M m ³ /a of ground -14.6 M m ³ /a ⁹). The Services and Agricultur groundwater use in the Managed Aquifer Rec registered volume (see The registered ground the northern section of	dwater (note that there is primary sectors contrib re (irrigation), constitutin e area (it's important to n charge). It is acknowled a Figure 3-1 and the tab water use is concentrate f the GRU, as well as c	s a Managed Aquifer Red uting to groundwater us ig 75.4% and 15.32%, response tote that these percentage dged that farmers likely ale to the right). ed in the PHA, with addition on the lower eastern slop	charge component of se are Water Supply spectively, of the total es do not account for extract double their ional industrial use in pes of the Peninsula	Agriculture: Watering Live Industry (Non-Urban) Industry (Urban) Mining Schedule 1 Urban (Excluding Indust And/Or Domestic) Water Supply Service Managed Aquifer Recha	stock	50 2 2 31 1 1 3 5 -	0.05 1.05 0.97 0.39 0 0 0.02 20.09 -14.6	
Groundwater Use	12.00 M m ³ /a of ground -14.6 M m ³ /a ^o). The Services and Agricultur groundwater use in the Managed Aquifer Rec registered volume (see The registered ground the northern section of Mountain range (i.e., So	dwater (note that there is primary sectors contrib re (irrigation), constitutin e area (it's important to n charge). It is acknowled a Figure 3-1 and the tab water use is concentrate f the GRU, as well as c	s a Managed Aquifer Red uting to groundwater us ig 75.4% and 15.32%, res tote that these percentage dged that farmers likely le to the right). ed in the PHA, with additi on the lower eastern slop rtantly, none of the settlen	charge component of se are Water Supply spectively, of the total es do not account for extract double their ional industrial use in pes of the Peninsula	Agriculture: Watering Live Industry (Non-Urban) Industry (Urban) Mining Schedule 1 Urban (Excluding Indust And/Or Domestic) Water Supply Service	stock	50 2 2 31 1 3 5	0.05 1.05 0.97 0.39 0 0.02 20.09	

GRU	GRU Name: Cape Flats Main Suburbs: Philippi, Bellville and Kuilsriver Total Area (km²): 421.94											
	The groundwa	Quality Component ater quality compone pundwater Quality E	ent of the Reserve, det HN Reserve / Require	ailed in the ta ment	ble below a	nd described	in Section 2	2.3 & 2.4, is (determined a	s two comp	onents 1) the Ground	water Quality Resen
	GRU¤	AQU¤	Parameter¤	Unit¤	No.·BHs¤	NoSamples	Baseline- Conc.¤	Min-Conc.¤	Max-Conc.¤	Median · Conc.¤	Groundwater-Quality- Reserve¤	BHN·Threshold¤
			рН¤	°¤	37¤	581¤	8.30¤	5.07¤	8.55¤	7.84¤	8.55¤	59¤
			Electrical Conductivity=	mS/m¤	37¤	581¤	113.72¤	13.00¤	578.00¤	88.85¤	113.72¤	150¤
			Sodium·as·Na¤	mg/l=	37¤	581¤	111.36¤	3.30¤	784.00¤	58.90¤	111.36¤	200¤
			Calcium-as-Ca¤	mg/l¤	37¤	581¤	112.16¤	3.81¤	268.50¤	101.50¤	112.16¤	150¤
			Magnesium·as·Mg≖	mg/l¤	37¤	581¤	14.62¤	1.00¤	124.70¤	11.60¤	14.62¤	70¤
	Cape·Flats¤	Primary-/-	Chloride-as-Cl¤	mg/l¤	37¤	581¤	209.22¤	5.00¤	1993.00¤	100.00¤	209.22¤	200¤
	Capernatse	Intergranular-Aquifer	Nitrate-+-Nitrite¤	mg/l¤	37¤	581¤	8.35¤	0.02¤	23.20¤	1.12¤	8.35¤	400¤
Groundwater Reserve			Fluoride-as-F=	mg/l≖	37¤	581¤	0.26¤	0.05¤	3.05¤	0.15¤	0.26¤	10¤
			Ammonia-as-NH3=	mg/l¤	37¤	581¤	0.08¤	0.02¤	31.89¤	0.06¤	0.08¤	1.5¤
			Orthophosphate-as-PO4	r mg/l≖	37¤	581¤	0.03¤	0.00¤	1.35¤	0.01¤	0.03¤	-0
			Potassium·as·K¤	mg/l=	37 ¤	581¤	2.95¤	0.15¤	53.66= 326.00=	1.90¤	2.95¤	-=
	The groundwater quantity compo the EWR and BHN Reserves.								calculated b			
	Recharge		R Reserve (Mm ³ /a)	R Reserve (Mm ³ /a) BHN Reserve (Mm ³ /a)		GW Reserve (Mm ³ /a)		(Mm ³ /a)		Water Use (Mm ³ /a)		Still Allocable (Mm ³ /a)
	41.2	5 ¹²	0.51	0.70		1.2	1	4	0.04		12.00 ¹³	28.04
Future Scenario 2050 (Scenario 7b)	factors directly in recharge fro growth and the	y influenced the par om 41.25 to 38.70 M e implementation of opulation growth. In	nditions for the year 2 ameters used to deten I m ³ /a, influenced by b groundwater developr light of these changes R Reserve (Mm ³ /a)	mine the Gro oth climate ch nent scheme	undwater Re ange and th s in the area on Category	eserve, specit ne elimination a. Furthermor	fically the gr of IAPs. Ac e, the grour C to D (refe	roundwater of dditionally, gr ndwater contr er to Section 2 Total Allo	ontribution to oundwater us ribution to the	o the BHN a se increase e BHN Rese able below).	nd EWR. The scena d from 12.00 to 23.02 erve rose from 0.70 to	io involved a decrea M m ³ /a due to secto
	38.1	70	0.51	1.29		1.8	0		6.90		23.02	13.88
			_ · - ·				-					

GRU	GRU Name: Cap Main Suburbs: P Total Area (km ²):	hilippi, Bellville a	and Kuilsriver								
	Site Name Data Source Monitoring Monitoring Latitude Longitude Monitoring Description										
			t Option 2								
	G2N0008	HYDSTRA	Zeekoevlei	EWR	-34.01008	18.50937	Frequency: Quarterly				
	G2N0104	HYDSTRA	Zeekoevlei	EWR	-34.050078	18.51937	1) Groundwater level:				
	G2N0612	HYDSTRA	GRU	EWR	-34.01902	18.57068	 Manual groundwater level measurements, as well as average daily reading from automatically recorded level logger. 				
	G2N0649	HYDSTRA	GRU	EWR	-34.03966	18.56788	2) Groundwater Quality:				
	G2N0653	HYDSTRA	GRU	EWR	-34.04875	18.56313	 Standard Parameters: pH, EC, Ca, Mg, Na, K, Palk, MAlk, F, Cl, PO₄, SO₄ Site specific additions for EWR: NO₂, NO₃, NH₄ 				
onitoring Programme	G2N0108	HYDSTRA	GRU	EWR	-34.02465	18.62082	 Site specific additions as per RQO ¹⁹: 				
onitoring Programme	G2N0619	HYDSTRA	GRU	EWR	-33.9331	18.62162	Bxi20 (Zeekoevlei): Nutrients (Dissolved Inorganic Nutrients [DIN] and Dissolved Inorganic				
	G2N0059	HYDSTRA	Zeekoevlei	EWR	-34.01008	18.49937	Phosphate [DIP]); Salts; Pathogens (Enterococci & Escherichia Coli); System				
	3418AB00077	NGA	Bvii7	EWR	-34.06602	18.46429	Variables (Temperature, pH, Dissolved Oxygen, etc)				
						BHN Managemen	nt Option 3				
	3318DC00004	NGA	GRU	BHN	-33.97801	18.56871	Frequency: Monthly or Quarterly				
	3318DC00114	NGA	GRU	BHN	-33.95301	18.5826	1) Groundwater level:				
	3318DC00163	NGA	GRU	BHN	-33.98717	18.6276	 Manual water level measurements and continuous hourly readings from automatically recorded level loggers. Possible need for telemetry systems. 				
	3418BA00026	NGA	GRU	BHN	-34.03686	18.59568	Groundwater Quality (Background water quality and BHN):				
	3418BA00346	NGA	GRU	BHN	-34.06075	18.65068	 Standard Parameters: pH, EC, Ca, Mg, Na, K, Palk, MAlk, F, CI, PO₄, SO₄ Site specific additions for BHN: E coli. Total Coliforms. and Faecal Coliforms 				
	88847	WMS	GRU	BHN	-34.051389	18.601389					

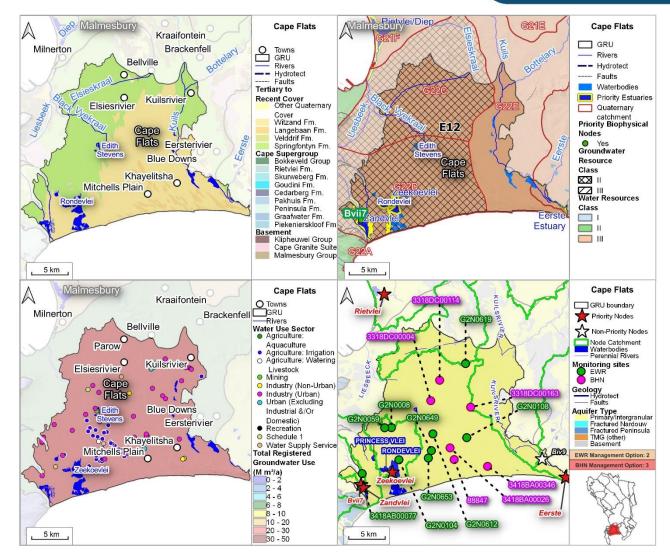


Figure: A series of maps for the Cape Flats GRU: Top-left displays the GRU extent with geology and structural features; Top-right displays IUAs, WRCs, and Groundwater Classes; Bottom-left indicates total registered groundwater use with boreholes and water use sectors; Bottom-right depicts EWR and BHN monitoring sites per GRU based on Management Options.

GROUNDWATER RESERVE DATABASE

DATABASE STRU	CTURE & OUTLINE
Mapping	Jpegs Shp. & Raster
Project Management	 PMC meetings & Minutes Progress Reports
Reports	 Specialist Reports for GRD Report Tables (xlsx) & Images
Gazetting	Letter to Region & Gazette Draft Report Tables (xlsx) & Images
Stakeholders	 PSC meetings & Minutes Stakeholder Database & Comments
Capacity Building	Presentations Coursework Materials

THANK YOU